
J
H
E
P
0
6
(
2
0
0
8
)
1
0
6

Published by Institute of Physics Publishing for SISSA

Received: March 30, 2008

Revised: June 14, 2008

Accepted: June 17, 2008

Published: June 30, 2008

A Yukawa coupling parameterization for type I+II

seesaw formula and applications to lepton flavor

violation and leptogenesis

Evgeny Kh. Akhmedovab and Werner Rodejohanna

aMax-Planck-Institut für Kernphysik,

Postfach 103980, D–69029 Heidelberg, Germany
bNational Research Center Kurchatov Institute,

123182 Moscow, Russia

E-mail: akhmedov@mpi-hd.mpg.de, werner.rodejohann@mpi-hd.mpg.de

Abstract: In the type I + II seesaw formula the mass matrix of light neutrinos mν receives

contributions from the exchanges of both heavy Majorana neutrinos and SU(2)L-triplet

Higgs bosons. We propose a new parameterization for the Dirac-type Yukawa coupling

matrix of neutrinos in this case, which generalizes the well known Casas-Ibarra parameter-

ization to type I + II seesaw and is useful when the triplet term in mν is known. Neutrino

masses and mixing, lepton flavor violation in decays like µ → eγ within mSUGRA models

and leptogenesis can then be studied within this framework. We illustrate the usefulness

of our new parameterization using a number of simple examples.

Keywords: Neutrino Physics, Baryogenesis, Supersymmetry Phenomenology.

mailto:akhmedov@mpi-hd.mpg.de
mailto:werner.rodejohann@mpi-hd.mpg.de
http://jhep.sissa.it/stdsearch


J
H
E
P
0
6
(
2
0
0
8
)
1
0
6

Contents

1. Introduction 1

2. Formalism 3

3. Dirac-type Yukawa coupling parameterization for type I+ II seesaw and

its applications 7

3.1 First example 10

3.2 Second example 13

3.3 Third example 14

4. Summary and conclusions 17

1. Introduction

The seesaw mechanism [1, 2] provides a very natural and attractive explanation of the

smallness of neutrino mass [3] as being due to exchanges of heavy particles. In the most

commonly considered type I seesaw, these are heavy sterile (electroweak-singlet) Majorana

neutrinos [1]; another well studied case is type II seesaw, where the small neutrino mass

is generated by the induced vacuum expectation value (VEV) of an SU(2)L-triplet Higgs

boson [2]. In both cases, the light neutrinos are Majorana particles with the effective mass

matrix mν , which in the basis where the mass matrix of the charged leptons is diagonal

and real, is diagonalized according to

mν = U∗ mdiag
ν U † , mdiag

ν = diag(m1,m2,m3) . (1.1)

Here U is the leptonic mixing matrix, which depends on three mixing angles, one Dirac-type

and two Majorana-type CP-violating phases. Although both sterile neutrinos and Higgs

triplets can be freely added to the standard model, they are most natural in its partially

unified or grand unified extensions, such as left-right symmetric models or SO(10) grand

unified theories (GUTs), where both type I and type II contributions to the neutrino mass

are typically present. In that case the neutrino mass matrix is a sum of two terms:1

mν = mII
ν + mI

ν = vL fL − v2
u

vR
YD f−1

R Y T
D . (1.2)

Here the first term is the SU(2)L-triplet Higgs contribution with vL the VEV of the triplet

and fL the triplet Yukawa coupling matrix. The triplet VEV vL ≃ µ v2
u/M2

∆, where µ is

1Note that sometimes in the literature the mechanism leading to the entire eq. (1.2) (rather than only

to the triplet contributions to mν) is called type II seesaw.
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the trilinear Higgs coupling, vu is the VEV of the up-type Higgs doublet Hu, and M∆ is

the mass of the triplet. The second term in (1.2) is the conventional type I seesaw term,

in which vu YD is the Dirac mass matrix mD. Having in mind extensions of the standard

model, we have written the Majorana mass matrix of heavy neutrinos MR as vR fR, with

fR being the relevant coupling matrix. In particular, in left-right symmetric gauge theories

fR is the Yukawa coupling matrix of an SU(2)R-triplet Higgs and vR is its VEV, which is

related to the VEV of the SU(2)L-triplet via vL vR ∝ v2
u. Regardless of the variant of the

seesaw mechanism and barring unnaturally small Yukawa couplings or strong cancellations,

the typical mass scale of the neutrino mass generation (M∆ or vR or both) exceeds 109 GeV,

which is way beyond the reach of direct experimental tests. Hence, the seesaw mechanism

of neutrino mass generation can only be probed indirectly.

One way of indirectly probing the seesaw is provided by cosmology, where the observed

baryon number of the universe can be generated through the baryogenesis via leptogenesis

mechanism [4, 5]. Leptogenesis can work successfully within both type I [6, 7] and type

II [8] seesaw scenarios,2 as well as in the combined type I + II seesaw [9] (for earlier works

see [10 – 12]), where the neutrino mass matrix is given by eq. (1.2). Another possibility of

testing the seesaw is through lepton flavor violation (LFV) within supersymmetric theories,

which has also been discussed in both type I [13] and type II [14 – 16] seesaw frameworks.

Here LFV is induced by off-diagonal entries in the slepton mass matrices, which can be

generated radiatively. In many well motivated scenarios, the size of these entries depends

on the seesaw parameters. Leptogenesis and LFV depend on combinations of the Yukawa

coupling matrices that are different from those entering into the seesaw formula (1.2), and

this can be used — at least in principle — to reconstruct the seesaw parameters.

An important issue in these approaches is that the number of high energy parameters,

i.e. of those contained in mII
ν , mD and MR, exceeds the number of low energy parameters

contained in mν , simply because the heavy degrees of freedom are integrated out at low en-

ergies. An exception is the case of type II dominance, when mν coincides (or approximately

coincides) with mII
ν . In the general case, however, and without a specific model at hand,

one can only parameterize the unknown high energy quantities. Within the pure type I

seesaw, one such parameterization, which proved to be especially useful and convenient,

was suggested by Casas and Ibarra [17]. This is the parameterization of the Dirac-type

Yukawa coupling matrix YD in which it is written as

vu YD = i U∗

√

mdiag
ν R

√

Mdiag
R = i

√
vR U∗

√

mdiag
ν R

√

fdiag
R . (1.3)

Here R is a complex orthogonal matrix that contains the parameters which are integrated

out when mν is obtained, and which therefore cannot be determined from low energy

neutrino data without additional input. Note that this parameterization is valid in the

basis in which the charged lepton Yukawa coupling is real and diagonal. Many analyses

of neutrino mixing, LFV and/or leptogenesis in the type I seesaw framework have been

performed using this parameterization [18, 19]. However, to the best of our knowledge, no

parameterization of this kind has been suggested for the general case of type I + II seesaw.

2In the case of pure type II seesaw more than one Higgs triplet is necessary for leptogenesis to work.
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The purpose of the present paper is to generalize the Casas-Ibarra parameterization to the

case of the combined type I + II seesaw, when the mass matrix of light neutrinos is given

by eq. (1.2), and to demonstrate the usefulness of the proposed parameterization.

The paper is organized as follows. We summarize the main aspects of lepton flavor

violation, leptogenesis and neutrino mixing within type I + II seesaw in section 2. Section 3

contains our central results. Here we introduce our parameterization of the Dirac-type

Yukawa coupling matrix in the case of the combined type I + II seesaw. We also give

simple examples on its usage, two of which are based on the approximate tri-bimaximality

of neutrino mixing. We conclude in section 4.

2. Formalism

We will work in the basis in which the mass matrix of charged leptons is real and diagonal.

The mass matrix of light neutrinos is then diagonalized according to eq. (1.1), with U the

leptonic mixing matrix, for which we will use the parameterization

U =







c12 c13 s12 c13 s13 e−iδ

−c23 s12 − s23 s13 c12 eiδ c23 c12 − s23 s13 s12 eiδ s23 c13

s23 s12 − c23 s13 c12 eiδ −s23 c12 − c23 s13 s12 eiδ c23 c13






P . (2.1)

Here cij = cos θij, sij = sin θij , δ is the Dirac-type CP-violating phase, and the Majorana

phases α and β are contained in the matrix

P = diag(1, e−iα, e−iβ) . (2.2)

The analyses of neutrino experiments revealed the following best-fit values and 3σ ranges

of the oscillation parameters [20]:

∆m2
⊙ ≡ m2

2 − m2
1 =

(

7.9+1.1
−0.89

)

· 10−5 eV2 ,

sin2 θ12 = 0.31+0.07
−0.05 ,

∆m2
A ≡

∣

∣m2
3 − m2

1

∣

∣ =
(

2.6+0.6
−0.6

)

· 10−3 eV2 , (2.3)

sin2 θ23 = 0.47+0.17
−0.15 ,

|Ue3|2 = 0+0.040
−0.000 .

Depending on the sign of m2
3 −m2

1, the neutrino masses are normally or inversely ordered:

normal: m3 > m2 > m1 with m2 =
√

m2
1 + ∆m2

⊙ ; m3 =
√

m2
1 + ∆m2

A ,

inverted: m2 > m1 > m3 with m2 =
√

m2
3 + ∆m2

⊙ + ∆m2
A ; m1 =

√

m2
3 + ∆m2

A .

(2.4)

The overall scale of neutrino masses is not known, except for the upper limit of order 1 eV

coming from direct mass search experiments and cosmology.

The type I seesaw mechanism [1] corresponds to the situation when the light neutrino

masses are induced by their coupling with heavy Majorana neutrinos. Introducing the

– 3 –
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Dirac mass matrix mD = vu YD with vu = v sin β being the VEV of Hu, and the Majorana

mass matrix MR = vR fR for heavy neutrinos, one finds for vR ≫ vu the light neutrino

mass matrix

mI
ν = − v2

u

vR
YD f−1

R Y T
D . (2.5)

The masses of light neutrinos can also be generated through their coupling with an SU(2)L-

triplet Higgs, which gives the triplet, or type II seesaw [2]:

mII
ν = vL fL . (2.6)

In this case the neutrino mass matrix is directly given by the triplet Yukawa coupling

matrix fL, up to an overall scale which is just the triplet VEV vL. In left-right symmetric

models and their GUT extensions both seesaw contributions to mν are naturally present,

leading to the type I + II seesaw expression of eq. (1.2). Moreover, in these models there

is a relation between the VEVs of the neutral components of the two triplets vL and vR:

vL vR = γ v2
u , (2.7)

where γ depends on the parameters of the Higgs potential. Type I + II seesaw can, of

course, also be realized without extending the gauge group of the standard model.

In general, the matrices mν , fL and fR are complex symmetric, whereas YD is a general

complex matrix (of dimension 3 × 3 for three generations of light and heavy neutrinos).

In left-right symmetric models and their extensions, in addition to the gauge symmetry, a

discrete left-right symmetry is often assumed, which can be realized either as C-conjugation

or as a parity symmetry. This leads to additional constraints on the entries of the seesaw

relation (1.2). Namely, in the case of C-conjugation symmetry, one has fL = fR, YD = Y T
D ,

while for parity symmetry fL = f∗
R, YD = Y †

D. In both cases the seesaw exhibits a curious

duality property [21] (see also [22, 23]). In our study, however, we will not assume any

additional constraints on the entries of eq. (1.2). As the neutrino mass matrix given by this

formula contains two terms, it leads to a number of interesting possibilities for explaining

the features of neutrino mixing [24].

Let us now briefly summarize the LFV formulae relevant to our discussion. In super-

symmetric scenarios LFV is triggered by off-diagonal entries in the slepton mass matrix

m̃2
L. The branching ratios for radiative decays of the charged leptons ℓi = e, µ, τ are

BR(ℓi → ℓjγ) = BR(ℓi → ℓj νν̄)
α3

G2
F m8

S

∣

∣

∣

(

m̃2
L

)

ij

∣

∣

∣

2

tan2 β , (2.8)

where mS is a typical mass scale of SUSY particles. The values of the branching ratios

BR(ℓi → ℓj νν̄) are BR(µ → e νν) ≃ 1, BR(τ → µ νν̄) ≃ 0.174 and BR(τ → e νν) ≃
0.178 [25]. Current limits on the branching ratios for ℓi → ℓjγ are BR(µ → eγ) ≤ 1.2 ·
10−11 [26], BR(τ → eγ) ≤ 1.1 · 10−7 [27] and BR(τ → µγ) ≤ 6.8 · 10−8 [28]. One expects

to improve these bounds by two to three orders of magnitude for BR(µ → eγ) [29] and by

one to two orders of magnitude for the other branching ratios [30].

To satisfy the requirement that the LFV branching ratios BR(ℓi → ℓjγ) be below their

experimental upper bounds, one typically assumes that m̃2
L and all other slepton mass

– 4 –



J
H
E
P
0
6
(
2
0
0
8
)
1
0
6

and trilinear coupling matrices are diagonal at the scale MX . Such a situation occurs

for instance in mSUGRA scenarios. Off-diagonal terms get induced at low energy scales

radiatively, which explains their smallness. In this case a very good approximation for

the typical SUSY mass appearing in eq. (2.8) is m8
S = 0.5m2

0 m2
1/2

(m2
0 + 0.6m2

1/2
)2 [19],

where m0 is the universal scalar mass and m1/2 is the universal gaugino mass at MX . In a

supersymmetric seesaw framework the radiative entries giving rise to LFV depend on the

same parameters as the neutrino masses. If there is only the type I seesaw term in mν , the

well-known result is [13]

(

m̃2
L

)I

ij
= −(3m2

0 + A2
0)

8π2

(

YD LY †
D

)

ij
, where Lij = δij ln

MX

Mi
. (2.9)

In the case when only the triplet term mII
ν contributes to mν , one finds [14]

(

m̃2
L

)II

ij
= −3

(3m2
0 + A2

0)

8π2

(

fL f †
L

)

ij
ln

MX

M∆

. (2.10)

Here and in eq. (2.9) A0 is the universal trilinear coupling. When both terms in the mass

matrix eq. (1.2) are present, their contributions to
(

m̃2
L

)

ij
sum up:

(

m̃2
L

)

ij
=

(

m̃2
L

)I

ij
+

(

m̃2
L

)II

ij

= − (3m2
0 + A2

0)

8π2

[

(YD)ik

(

Y †
D

)

kj
ln

MX

Mk
+ 3

(

fL f †
L

)

ij
ln

MX

M∆

]

.
(2.11)

As the LFV branching ratios depend on the absolute value squared of this quantity, there

will be a interference term between the contributions from the triplet term and from the

type I seesaw term if both of them have off-diagonal entries. We will now compare the

structures of two expressions:

mν = vL fL − v2
u

vR
YD f−1

R Y T
D versus

(

m̃2
L

)

ij
∝

(

fL f †
L

)

ij
+

(

YD Y †
D

)

ij
, (2.12)

where we have omitted logarithmic corrections to
(

m̃2
L

)

ij
. There are several possibilities,

depending on the relative magnitudes of the two contributions to
(

m̃2
L

)

ij
and mν :

(i) in the neutrino mass matrix the type I seesaw term mI
ν dominates, and in the off-

diagonal entries of the RG-induced slepton mass matrix
(

m̃2
L

)I

ij
dominates. This

situation is the one best studied in the literature ([17 – 19], for a recent review see [31]).

We have nothing new to add in this case;

(ii) in the neutrino mass matrix the triplet term mII
ν dominates, and in the off-diagonal

entries of the RG-induced slepton mass matrix
(

m̃2
L

)II

ij
dominates. This situation has

also been studied [15, 16], though less often than (i);

(iii) in the neutrino mass matrix the triplet term mII
ν dominates, while in the off-diagonal

entries of the RG-induced slepton mass matrix
(

m̃2
L

)I

ij
dominates. This situation,

to our knowledge, has not been studied yet. However, there are hardly any useful

statements to be made, as there is no link between neutrino masses and LFV, even

if fL and fR are related by fL = fR or fL = f∗
R;

– 5 –
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(iv) in the neutrino mass matrix the conventional seesaw term mI
ν dominates, whereas in

the off-diagonal entries of the RG-induced slepton mass matrix
(

m̃2
L

)II

ij
dominates.

Again, this situation remains to be investigated. However, as in case (iii), there is

hardly any link between neutrino masses and LFV, even if fL and fR are related;

(v) both terms are of comparable magnitude both in mν and in the off-diagonal entries

of the slepton mass matrix. This case will be of prime interest to us.

In the next section we will propose a Yukawa coupling parameterization to deal with

case (v), which in principle can also be applied to cases (iii) and (iv).

Before we turn to the Yukawa coupling parameterization, let us summarize the relevant

leptogenesis formulae. We will assume, as it has been done in most studies, that the heavy

Majorana neutrinos are lighter than the Higgs triplets. In that case it is sufficient to

consider only the decay of heavy neutrinos into lepton and Higgs doublets (and similarly

for the SUSY partners), while the decays of the triplets into two lepton doublets can

be neglected. The CP-violating decay asymmetries of heavy neutrinos Ni contain two

contributions. The first one is the same as in the case of pure type I seesaw [7, 5]:

(εα
i )N =

1

8π

1

(Y †
D YD)ii

∑

j 6=i

Im
[

(Y †
D)iα (YD)αj

(

Y †
D YD

)

ij

]

f(M2
j /M2

i )

+
1

8π

1

(Y †
D YD)ii

∑

j 6=i

Im
[

(Y †
D)iα (YD)αj

(

Y †
D YD

)

ji

] 1

1 − M2
j /M2

i

,
(2.13)

where

f(x) =
√

x

[

2

1 − x
− ln

(

1 + x

x

)]

. (2.14)

We have indicated here that flavor effects [32] might play a role, i.e., εα
i describes the decay

of the heavy neutrino of mass Mi into leptons of flavor α = e, µ, τ . We will focus here on

the case when the lowest-mass heavy neutrino is much lighter than the other two, i.e. M1 ≪
M2,3; the lepton asymmetry is then dominated by the decay of this lightest neutrino. In

this case f(M2
j /M2

1 ) ≃ −3M1/Mj , and in addition the second term in eq. (2.13) is strongly

suppressed, therefore we will neglect it in what follows.

The second type of asymmetry is encountered when a Higgs triplet is exchanged in the

loop diagrams [9]:

(εα
i )∆ =

3

8π

Mi vL

v2
u

1

(Y †
D YD)ii

Im
[

(

f∗
L YD

)

αi
(Y T

D )iα

]

g(M2
∆/M2

i ) , (2.15)

where

g(x) = x ln

(

1 + x

x

)

. (2.16)

In the limit M∆ ≫ M1,2,3, which we will assume, one has g(x) ≃ 1− 1
2 x = 1− 1

2
(Mi/M∆)2.

The total asymmetries (εi)N and (εi)∆ are obtained by summing (εα
i )N and (εα

i )∆ over the

flavor index α.

The baryon asymmetry of the universe (ηB = nB/nγ = 6.1 · 10−10) is finally found as

ηB ≃ −0.96 · 10−2
∑

α

εα
1 κα , (2.17)

– 6 –
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where the washout factors κα are obtained by solving the relevant Boltzmann equations.

The approximate expression we use is [33, 34]

κα ≃ 2

Kα zB(Kα)

{

1 − exp
[

− Kα zB(Kα)/2
]}

, (2.18)

where Kα =
∑

Kα
i with Kα

i = |(YD)αi|2 Ki/(Y
†
D YD)ii and [33]

zB(Kα) = 2 + 4 (Kα)0.13 exp (−2.5/Kα) . (2.19)

Note that this formula is valid for an initial thermal abundance of the heavy neutrinos,

an assumption we make for simplicity. The parameter Ki in the expression for Kα
i is

defined as Ki = Γi/H(T )|T=Mi
, with the tree-level decay width of the ith heavy neutrino

Γi = (Y †
D YD)ii Mi/(8π) and the Hubble parameter H(T ) = 1.66

√
g∗ T 2/MPl. The above

approximate expression for zB(Kα) has been obtained in ref. [33] by extending the analytic

procedure from ref. [34] from the one-flavor case to the flavored case. In the examples

presented in section 3 we take into account the uncertainty related to flavor effects and

the approximate nature of the analytic expression for the washout factors by requiring the

baryon asymmetry to lie in the interval ηB = (5.7 ÷ 6.6) · 10−10. This has to be compared

with the measured value ηB = (6.0 ÷ 6.3) · 10−10 (at 68 % C.L.) from the WMAP 5 year

data [35].

3. Dirac-type Yukawa coupling parameterization for type I+ II seesaw

and its applications

When the triplet term mII
ν is present in the seesaw relation, the procedure that led to the

Casas-Ibarra parameterization (1.3) of the matrix YD cannot be directly applied. However,

as we shall show, a simple transformation of eq. (1.2) makes it possible to generalize the

parameterization (1.3) to the case of type I + II seesaw.

First, we move the type II contribution to the left hand side of eq. (1.2), which gives

mν − vL fL = − v2
u

vR
YD f−1

R Y T
D . (3.1)

It is convenient to introduce the notation

Xν ≡ mν − vL fL , diagonalized as Xν = V ∗
ν Xdiag

ν V †
ν (3.2)

with a unitary matrix Vν . Multiplying both sides of eq. (3.1) by X
−1/2
ν , we find

l1 = − v2
u

vR

(

X−1/2
ν YD f

−1/2
R

) (

f
−1/2
R Y T

D X−1/2
ν

)

. (3.3)

In what follows, we will be assuming that all eigenvalues of fR (as well as those of Xν) are

distinct.3 It can be shown that in this case the matrices X
1/2
ν and f

1/2

R and their respective

3In the examples considered in the next subsections Xν has two zero eigenvalues, which should be

understood as a limiting case of small distinct non-zero eigenvalues. In other words, the expressions for Xν

used there, which lead to Xdiag
ν = diag(0, 0, a), should be understood as approximations to the exact Xν ,

for which Xdiag
ν = diag(ε1, ε2, a) with |ε1|,|ε2| ≪ |a|.

– 7 –
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inverse matrices are symmetric, and therefore one can rewrite eq. (3.3) as

l1 = RRT with R = ±i
vu√
vR

(

X−1/2
ν YD f

−1/2
R

)

. (3.4)

Eq. (3.4) means that the type I + II seesaw relation requires R to be an (in general complex)

orthogonal matrix, but otherwise does not constrain it. Thus, for the Dirac-type Yukawa

coupling YD we have

vu YD = ±i
√

vR X1/2
ν R f

1/2
R , (3.5)

where R is an arbitrary complex orthogonal matrix. It can be parameterized as

R = diag(±1, ±1, ±1)R12 R13 R23 , (3.6)

where Rij is the matrix of rotation by a complex angle ωij = ρij + i σij in the ij-plane.

The parameterization of the Yukawa coupling matrix YD in eq. (3.5) with R given by

eq. (3.6) is the most general one satisfying the combined type I + II seesaw formula. Note

that it is sufficient to consider the reflections described by the matrix diag(±1, ±1, ±1)

in eq. (3.6) with only one minus sign. Indeed, a reflection with an even number of minus

signs is equivalent to a rotation and can be absorbed into a redefinition of the complex

angles ωij, whereas the reflection with three minus signs amounts to flipping the overall

sign of the matrix YD. Such a sign change is irrelevant, because YD can in any case be

reconstructed from the seesaw relation only up to the sign (see eq. (3.5)). In our examples

considered below, all the reflections either leave the results unchanged or lead to the overall

sign flip of YD; for this reason in subsections 3.1, 3.2 and 3.3 we restrict ourselves to the

case R = R12 R13 R23.

As was pointed out above, when the underlying theory possesses a discrete left-right

symmetry, type I + II seesaw exhibits a duality property [21]. In that case the seesaw

relation (1.2) is invariant with respect to the duality transformation fR → f̂R ≡ mν/vL−fL.

It is interesting to note that in terms of fR and its dual f̂R eq. (3.5) can be rewritten as

vu YD = ±i
√

vLvR f̂
1/2

R R f
1/2

R . (3.7)

It is worth stressing the difference between the approach to type I + II seesaw adopted

in refs. [21 – 23] and the one presented here. In refs. [21 – 23] YD and mν were assumed to

be known, and the seesaw relation was solved for the matrix fR = fL (or fR = f∗
L); eight

solutions were found, forming four dual pairs. In our case we assume mν , mII
ν = fL vL

and MR = fR vR (or equivalently mI
ν , mII

ν and MR) to be known and reconstruct YD. We

find infinitely many solutions, parameterized in terms of an arbitrary complex orthogonal

matrix R.

For practical applications, it proves to be convenient to use a slightly modified version

of eq. (3.5). First, we note that for discussions of both LFV and leptogenesis one has to go

to the basis where the mass matrix of heavy Majorana neutrinos MR is diagonal and real.

As MR = fR vR, this also diagonalizes the matrix fR. The corresponding transformation

is

V T
R fR VR = fdiag

R , (3.8)
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with a unitary matrix VR. Note that fdiag
R = diag(M1, M2, M3)/vR. The transforma-

tion (3.8) amounts to replacing the Yukawa coupling matrix YD in the seesaw relation

according to YD → YD VR, i.e. it fixes its right-handed basis. In what follows we will be

assuming that the matrix MR has been diagonalized and consider YD in this basis, except

in example 3 below, where this diagonalization will be carried out explicitly. Next, it is

convenient to express Xν through its eigenvalues. To this end, using eq. (3.2) we rewrite

Xν on the left hand side of eq. (3.1) as

Xν = V ∗
ν Xdiag

ν V †
ν =

[

V ∗
ν (Xdiag

ν )1/2
][

V ∗
ν (Xdiag

ν )1/2
]T

. (3.9)

Multiplying then eq. (3.1) by [V ∗
ν (Xdiag

ν )1/2]−1 on the left and by {[V ∗
ν (Xdiag

ν )1/2]T }−1 on

the right and following the same steps as above, one readily finds

vu YD = ±i
√

vR V ∗
ν

√

Xdiag
ν R

√

fdiag
R . (3.10)

This parameterization is the main point of the present paper and we will be using it in

the subsequent discussion. Note that the matrix R here is in general not the same as

the matrix R in eq. (3.5). This is of no concern to us, as both are arbitrary complex

symmetric matrices. We note that our parameterization is useful — just like the Casas-

Ibarra parameterization — in the basis in which the charged lepton Yukawa matrix is real

and diagonal. A remark is also in order on why we assume that the triplet contribution

to mν is known, while YD is not (note that since we also assume mν to be known, the

knowledge of mII
ν implies that mI

ν is known as well). In general, the matrices mII
ν = fL vL

and YD stem from different Higgs sectors, and therefore by fixing one of them one does

not necessarily determine the other. Normally, to fix YD one invokes some additional

assumptions, such as quark-lepton symmetry. Our parameterization allows one to find

phenomenologically viable structures of YD and can therefore be useful for building neutrino

mass models and for studying their implications for LFV and leptogenesis.

In the remainder of this section we will give simple examples demonstrating the use-

fulness of the parameterization (3.10). In the first two examples we consider tri-bimaximal

neutrino mixing [36], which describes very well the current status of global fits to the low

energy neutrino data. The neutrino mass matrix giving rise to tri-bimaximal mixing can

be written as

mν =
m1

6







4 −2 −2

· 1 1

· · 1






+

m2 e2iα

3







1 1 1

· 1 1

· · 1






+

m3 e2iβ

2







0 0 0

· 1 −1

· · 1






. (3.11)

If neutrinos enjoy the normal mass hierarchy, one can neglect m1, so that the first term in

eq. (3.11) vanishes, and in addition one has m2 =
√

∆m2
⊙ and m3 =

√

∆m2
A. An appealing

possibility in this case is that the two remaining individual matrices in eq. (3.11) correspond

to mI
ν and mII

ν , respectively [24]. The moderate ratio of the two terms in mν is therefore
3
2

√

∆m2
A/∆m2

⊙ ≃ 8.4. We will investigate this possibility and apply our parameterization

of YD to this case in the following two examples. The third example will be based on a

perturbation of bimaximal leptonic mixing [37] in the type I + II seesaw framework.
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3.1 First example

Suppose first that the triplet term mII
ν is the term proportional to m3 in eq. (3.11), i.e.

fL =







0 0 0

· 1 −1

· · 1






e2iβ and vL =

√

∆m2
A/2 . (3.12)

The second, flavor democratic term proportional to m2, is then provided by the conven-

tional type I seesaw. Due to the seesaw relation (3.1) it determines Xν :

Xν = − v2
u

vR
YD f−1

R Y T
D =

m2 e2iα

3







1 1 1

· 1 1

· · 1






.

Consequently, one can write Xdiag
ν = diag(0, 0,m2) and

Vν =









1/
√

2 1/
√

6 1/
√

3

−1/
√

2 1/
√

6 1/
√

3

0 −2/
√

6 1/
√

3









diag(1, 1, e−iα) . (3.13)

The scales involved are vL ≃ 0.025 eV, vR = 3 v2
u/

√

∆m2
⊙ ≃ 1.0 · 1016 GeV (assuming

vu = 174 GeV, which is an excellent approximation as long as tan β >∼ 5), and γ ≃ 8.4.

Note that we have rather arbitrarily decomposed the second and third terms in eq. (3.11)

into the VEVs and Yukawa couplings or their combinations.

We have now all ingredients to express YD through eq. (3.10), and the result is

YD = −ieiα

√
m2√
3 vu









√
M1 sinω13

√
M2 cos ω13 sin ω23 −

√
M3 cos ω13 cos ω23

√
M1 sinω13

√
M2 cos ω13 sin ω23 −

√
M3 cos ω13 cos ω23

√
M1 sinω13

√
M2 cos ω13 sin ω23 −

√
M3 cos ω13 cos ω23









. (3.14)

Interestingly, the complex angle ω12 drops out of this expression.

Let us now discuss LFV in the considered example. Eq. (3.12) yields

fL f †
L = 2









0 0 0

0 1 −1

0 −1 1









, (3.15)

from which it follows that only the decay τ → µγ is influenced by the triplet term. The

decays µ → eγ and τ → eγ depend only on YD Y †
D, which has a democratic structure with

all terms equal to each other. Consequently, µ → eγ and τ → eγ decays are governed by

the same quantity:

∣

∣

(

YD Y †
D

)

21
+ 3

(

fL f †
L

)

21

∣

∣

2
=

∣

∣

(

YD Y †
D

)

31
+ 3

(

fL f †
L

)

31

∣

∣

2
(3.16)

=
m2

2

9v4
u

(

M1| sin ω13|2+| cos ω13|2(M2| sin ω23|2+M3| cos ω23|2)
)2

.
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This equality implies that BR(τ → eγ) = 0.178BR(µ → eγ). With the current limit of

1.2 · 10−11 on BR(µ → eγ), and an expected improvement of two orders of magnitude on

the limit of BR(τ → eγ) ≤ 1.1 · 10−7, it follows that in this scenario τ → eγ will not be

observed in a foreseeable future. The branching ratio of the decay τ → µγ depends on

(

YD Y †
D

)

32
+ 3

(

fL f †
L

)

32
=

(

YD Y †
D

)

21
− 6 . (3.17)

We have omitted here the logarithmic dependence on the masses of the triplet and of

the heavy Majorana neutrinos. In the plots to be shown in the following we use the full

expressions, however. As follows from eqs. (3.16) and (3.17), the matrix YD Y †
D + 3 fL f †

L

depends in general on two complex angles, ω23 and ω13. If degenerate heavy Majorana

masses are assumed, M1 = M2 = M3, then the real part of ω23 drops out of this matrix.

Turning to leptogenesis, the first thing to note is that all (εα
i )∆ vanish, which is a

consequence of the fact that the matrix f∗
L YD vanishes identically. The decay asymmetry

is therefore the same as for pure type I seesaw. The individual flavored asymmetries (εα
1 )N

are all identical and equal to one third of the total asymmetry. For hierarchical heavy

neutrinos we find

(εe
1)N = (εµ

1 )N = (ετ
1)N =

1

3
εN
1 ≃ 1

16π

m2 M1

v2
u

sin 2ρ13 sinh 2σ13

| sin ω13|2
(3.18)

≃ 6 · 10−9

(

M1

109 GeV

)

sin 2ρ13 sinh 2σ13

| sin ω13|2
.

Hence, only the complex angle ω13 plays a role here. Terms containing ω23 appear in the

decay asymmetry multiplied by f(M2
2 /M2

1 )M2 − f(M2
3 /M2

1 )M3, which vanishes in the

limit of hierarchical heavy neutrinos. If ω13 is zero, then N1 decouples (see eq. (3.14)), and

N2 will be responsible for leptogenesis. The low energy (Majorana) phases α and β do not

contribute to either ε1 or to ε2, i.e. play no role in leptogenesis.

Choosing MX = 2 · 1016 GeV, M∆ = 5 · 1015 GeV and the masses of heavy Majorana

neutrinos M1 = 1010 GeV, M2 = 1012 GeV, and M3 = 1015 GeV, we show in figure 1 the

baryon asymmetry against the imaginary part of ω13. All free parameters were varied, the

baryon asymmetry was required to be positive and the branching ratios of µ → eγ (which

in the considered example coincides with BR(τ → eγ)/0.178) and of τ → µγ were required

to lie below their current upper limits. The supersymmetric parameters we have used

correspond to the SPS benchmark point 2 of ref. [38] and are tan β = 10, m0 = 1450 GeV,

m1/2 = 300 GeV and A0 = 0. 4 The apparent symmetry of figure 1 around the value

Im(ω13) = σ13 = 0 can be explained by the dependence of the decay asymmetry (3.18) on

ω13. For all other parameters fixed, changing the sign of σ13 would also change the sign of

the decay asymmetry. To regain the correct sign of the baryon asymmetry one would then

also have to flip the sign of sin 2ρ13 (recall that ρ13 is varied as a free parameter in this

scatter plot), leading to the apparent symmetry of the figure.

4For completeness, we quote here the outcome for the other SPS benchmark points: the results for the

LFV branching ratios would be about 24 times larger for SPS 1a and 1b, and roughly 200 times larger for

SPS 4. The results for SPS 3 are about 7% larger than those we quote for SPS 2.
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Figure 1: Scatter plot for the baryon asymmetry ηB against the imaginary part of ω13 for the first

example of section 3.1. The observed value of ηB corresponds to the region between the horizontal

lines.
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Figure 2: The branching ratio of µ → eγ decay against the real part of ω13 for a particular point

in the parameter space of the first example of section 3.1 (see the text for details).

The branching ratio BR(τ → µγ) is basically independent of the parameters of YD,

because the constant term in eq. (3.17) turns out to be much larger than the YD-dependent

one. The ratio BR(µ → eγ)/BR(τ → µγ) is of order 10−4, implying that τ → µγ is

observable as long as BR(µ → eγ) is close to its current limit. Fixing in addition ρ23 = 1.7,

σ23 = −0.3 and σ13 = −0.7, we show in figure 2 the branching ratio of µ → eγ against

the remaining free parameter ρ13 = Re(ω13). For this particular point BR(τ → µγ) ≃

– 12 –
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Figure 3: First example from section 3.1: scatter plot for the branching ratio of µ → eγ decay

against the real part of ω23 when the baryon asymmetry ηB is within its experimental range.

5.05 · 10−8, which is very close to its current upper limit. Figure 3 shows a scatter plot for

the branching ratio of µ → eγ against the real part of ω23 when the baryon asymmetry is

within its allowed range. The symmetry around the value Re(ω23) = ρ23 = π of this plot

can be understood by noting that the term proportional to M3 | cos ω23|2 is the leading one

in eq. (3.16). This term depends on ρ23 through cos 2ρ23.

3.2 Second example

Let us now consider the situation in which the triplet term is flavor democratic, i.e.,

fL =







1 1 1

· 1 1

· · 1






e2iα and vL =

√

∆m2
⊙/3 .

The remaining term in eq. (3.11) is then

Xν = − v2
u

vR
YD f−1

R Y T
D =

m3 e2iβ

2







0 0 0

· 1 −1

· · 1






.

The involved scales are vL ≃ 0.003 eV, vR = 2 v2
u/

√

∆m2
A ≃ 1.2 · 1015 GeV, and γ ≃ 0.12.

Here we have taken v2
u/vR = m3/2 =

√

∆m2
A/2. The matrix Xν is diagonalized by

Vν =









1 0 0

0 1/
√

2 −1/
√

2

0 1/
√

2 1/
√

2









diag(1, 1, e−iβ) . (3.19)
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with Xdiag
ν = diag(0, 0,m3). From eq. (3.10) we then obtain

YD = −i eiβ

√
m3√
2 vu











0 0 0
√

M1 sin ω13

√
M2 cos ω13 sin ω23 −

√
M3 cos ω13 cos ω23

−
√

M1 sin ω13 −
√

M2 cos ω13 sin ω23

√
M3 cos ω13 cos ω23











.

(3.20)

Note that, as in the previous example, YD does not depend on ω12. The matrix YDY †
D has

zero first row and first column, therefore µ → eγ and τ → eγ decays are governed by the

triplet contribution, and depend on the the same quantity, namely (fL f †
L)21 = (fL f †

L)31 =

3 (note that fL f †
L = 3 fL e−2iα, i.e. is flavor democratic and has no dependence on any

of the free parameters). Consequently, the decay τ → eγ will not be observed in a near

future. The fact that µ → eγ and τ → eγ decays depend on the same quantity in both our

examples is a consequence of the µ–τ symmetry of the involved mass matrices. Finally,
(

YD Y †
D

)

32
+ 3

(

fL f †
L

)

32
(3.21)

=
1

2 v2
u

∣

∣18 v2
u − m3 (M1 | sin ω13|2 + | cos ω13|2(M2 | sin ω23|2 + M3 | cos ω23|2))

∣

∣ .

Because the 12- and 13-entries of fL f †
L are independent of any free parameters, it is not

possible to suppress them, and in general the branching ratios of LFV decays are too large

unless the SUSY masses are around or above 10 TeV.

Let us now turn to leptogenesis. As in the previous example, all (εα
i )∆ vanish because

the matrix f∗
L YD vanishes identically. The decay asymmetry (εe

1)N is also zero, whereas

(εµ
1 )N and (ετ

1)N are identical, and equal to 1
2
(ε1)N . In the limit of the hierarchical heavy

neutrino masses we find

(ǫµ
1 )N = (ετ

1)N =
1

2
(ε1)N =

3

32π

m3 M1

v2
u

sin 2ρ13 sinh 2σ13

| sin ω13|2
(3.22)

≃ 5 · 10−8

(

M1

109 GeV

)

sin 2ρ13 sinh 2σ13

| sin ω13|2
.

The dependence of these asymmetries on the complex angle ω13 is identical to that in the

first example considered above. Note that here the decay asymmetry is proportional to the

mass of the heaviest of light neutrinos m3, whereas it was proportional to m2 in the first

example.

3.3 Third example

Our final example is based on the following observation [39, 24]: if the triplet term corre-

sponds to bimaximal mixing [37] (Ue3 = 0 and θ12 = θ23 = π/4), then a small contribution

from the conventional type I seesaw term may shift θ12 sufficiently away from the maximal

mixing value to make it agree with data. Non-zero θ13 and non-maximal mixing in the 2-3

sector are also generated. It was assumed in [39, 24] that mD is hierarchical, symmetric

and coincides with the up-type quark mass matrix. The triplet term vL fL alone would

– 14 –



J
H
E
P
0
6
(
2
0
0
8
)
1
0
6

generate bimaximal neutrino mixing and a normal mass ordering with a non-vanishing

smallest neutrino mass. A discrete left-right symmetry is also assumed, such that fL = fR.

It is easy to see that in this case the type I seesaw term contributes to mν mainly a 33 entry

vL η, which is suppressed with respect to the leading (order vL) term of mII
ν [11]. The other

elements of mI
ν are much smaller than vL η, and we will neglect them. It should be noted

that many other Dirac mass matrices can also give the desired form mI
ν ∝ diag(0, 0, 1), and

our parameterization allows to study them all.

The triplet contribution is

fL = fR =







ǫ B ǫ B ǫ

· 1
2

(ǫ + eiφ) 1
2

(ǫ − eiφ)

· · 1
2

(ǫ + eiφ)






and vL =

√

∆m2
A

2
.

For simplicity we assume the order one parameter B and ǫ ≪ 1 to be real. The product

vL ǫ is of the order of
√

∆m2
⊙.

The type I contribution we require is

Xν = − v2
u

vR
YD f−1

R Y T
D ≡ vL







0 0 0

· 0 0

· · η






.

The involved scales are vL = 0.025 eV and vR = 2 v2
u/

√

∆m2
A ≃ 1.2 · 1015 GeV. As a

consequence of non-zero η, the zeroth-order values Ue3 = 0 and θ12 = θ23 = π/4 are

modified to |Ue3| ≃ B ǫ η/
√

2, tan2 θ23 ≃ 1 − 2 η and tan 2θ12 ≃ 4
√

2 B ǫ/η, where for

simplicity also η is assumed to be real. The value sin2 θ12 = 1
3

is achieved for B ǫ = η/2.

The ratio of the neutrino mass squared differences ∆m2
⊙/∆m2

A is approximately 3
4

η (4 ǫ+η).

A choice of parameters which leads to neutrino properties that agree with the data, and

which we will use in what follows, is B = 1.1, η = 0.1194 and ǫ = 0.0542. The low energy

phase φ is the Dirac-type CP violation phase which can influence neutrino oscillations.

Since Xν is diagonal, we have Vν = l1, whereas the matrix diagonalizing fR via

V T
R fR VR = fdiag

R is

VR =











√

1
2

√

1
2

0

−1
2

1
2

−
√

1
2

−1
2

1
2

√

1
2











PR ,

with PR = diag(i, 1, e−iφ/2). The eigenvalues of fR are ǫ (1 −
√

2 B), ǫ (1 +
√

2 B) and eiφ.

Since we started in a basis in which fR = fL is not diagonal, we have to use a modified

parameterization for YD, which is obtained from eq. (3.10) by multiplying it on the right
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Figure 4: Scatter plot for the baryon asymmetry ηB against the imaginary part of ω13 for the third

example of section 3.3. The observed value of ηB corresponds to the region between the horizontal

lines.

by VR. The Dirac-type Yukawa coupling matrix is then found to be

YD = i(
√

vR/vu)V ∗
ν

√

Xdiag
ν R

√

fdiag
R VR (3.23)

= i(
√

vR vL/vu) diag(0, 0,
√

η)R

√

fdiag
R VR,

=







0 0 0

0 0 0

(YD)31 (YD)32 (YD)33







where the non-zero entries are

(YD)31 =

√
vL η

2 vu

(√
2
√

M1 sin ω13 + cos ω13 (
√

M3 cos ω23 −
√

M2 sin ω23)
)

,

(YD)32 = −i

√
vL η

2 vu

(√
2
√

M1 sin ω13 − cos ω13 (
√

M3 cos ω23 −
√

M2 sin ω23)
)

,

(YD)33 = i

√
vL η√
2 vu

e−i φ/2 cos ω13 (
√

M3 cos ω23 +
√

M2 sin ω23) .

Note that in all three examples we have considered so far, YD does not depend on ω12. This

is related to the fact that in all these examples the matrix Xdiag
ν has only one (namely,

third) non-vanishing diagonal entry.

The result for LFV in the present example is that the branching ratios of the decays

ℓi → ℓjγ depend only on fL f †
L, namely, (fL f †

L)12 = (fL f †
L)13 = 2 ǫ2 B and (fL f †

L)23 =

−1
2
[1− ǫ2 (1+2B2)]. As in the previous two examples, τ → eγ is too rare to be observable.

The ratio BR(µ → eγ)/BR(τ → µγ) is approximately (2 ǫ2 B/1
2
)2/0.174 ≃ 10−3.
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Figure 5: Scatter plot for the baryon asymmetry ηB against the imaginary part of ω23 for the third

example of section 3.3. The observed value of ηB corresponds to the region between the horizontal

lines.

Turning to leptogenesis, only (ετ
1)N and (ετ

1)∆ are non-zero. The corresponding ex-

pressions are rather lengthy and we do not give them here. Figures 4 and 5 show scat-

ter plots of the baryon asymmetry against the imaginary parts of ω13 and ω23 for fixed

values of the LFV branching ratios. For definiteness, we have chosen again the SUSY

parameters tan β = 10, m0 = 1450 GeV, m1/2 = 300 GeV and A0 = 0, which gives

BR(µ → eγ) = 3.0 · 10−12, BR(τ → eγ) = 5.4 · 10−13 and BR(τ → µγ) = 3.1 · 10−9.

4. Summary and conclusions

We have considered lepton flavor violation and leptogenesis in the case of type I + II seesaw,

when the exchanges of both heavy Majorana neutrinos and SU(2)L-triplet Higgs bosons

contribute to the mass matrix of light neutrinos. We have proposed a parameterization of

the Dirac-type neutrino Yukawa coupling matrix YD in this framework, which generalizes

the Casas-Ibarra parameterization suggested for type I seesaw. Our parameterization au-

tomatically takes into account the type I + II seesaw formula and, like the Casas-Ibarra

one, involves an arbitrary complex orthogonal matrix R. This matrix depends in general

on six real parameters and can be parameterized in terms of three complex angles. We

have given simple examples illustrating the usefulness of the proposed parameterization.

In particular, we have considered LFV decays ℓi → ℓjγ and leptogenesis in the case when

the type I and type II contributions to both the light neutrino mass matrix mν and the

slepton mass matrix m̃2
L governing the LFV decays are of the same order. We considered

two examples leading to the tri-bimaximal leptonic mixing and an example based on a

relatively small but phenomenologically viable deviation from bimaximal mixing. In all

the examples we have studied we found that the matrix YD depends only on two out of the

– 17 –
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three complex angles parameterizing the matrix R, which is related to the fact that the

matrix Xν ≡ mν − fL vL had only one non-zero eigenvalue.

In each of the three examples that we considered, we have found that the decays µ → eγ

and τ → eγ are governed by the same quantity, and the corresponding branching ratios are

related by BR(τ → eγ) ≃ 0.178BR(µ → eγ), which is a consequence of the approximate

µ–τ symmetry of the involved mass matrices.

In the first two examples based on tri-bimaximal leptonic mixing we found that lep-

togenesis is essentially governed by one of the three complex angles parameterizing the

matrix R. This can be traced back to the facts that the masses of heavy Majorana neutri-

nos were assumed to be hierarchical and that the loops with the triplet exchange gave no

contribution to lepton asymmetry in these examples.

To conclude, we proposed a new parameterization of the Dirac-type neutrino Yukawa

coupling matrix YD which is the most general one satisfying the combined type I + II

seesaw formula. It expresses the matrix YD through both low energy and high energy

parameters and can be useful for studies of lepton flavor violation and leptogenesis in the

type I + II seesaw framework.
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